Modelling the human immune system by combining bioinformatics and systems biology approaches

Research output: Contribution to journalJournal articlepeer-review

  • Nicolas Rapin
  • Can Kesmir
  • Sune Frankild
  • Morten Nielsen
  • Claus Lundegaard
  • Brunak, Søren
  • Ole Lund
Over the past decade a number of bioinformatics tools have been developed that use genomic sequences as input to predict to which parts of a microbe the immune system will react, the so-called epitopes. Many predicted epitopes have later been verified experimentally, demonstrating the usefulness of such predictions. At the same time, simulation models have been developed that describe the dynamics of different immune cell populations and their interactions with microbes. These models have been used to explain experimental findings where timing is of importance, such as the time between administration of a vaccine and infection with the microbe that the vaccine is intended to protect against. In this paper, we outline a framework for integration of these two approaches. As an example, we develop a model in which HIV dynamics are correlated with genomics data. For the first time, the fitness of wild type and mutated virus are assessed by means of a sequence-dependent scoring matrix, derived from a BLOSUM matrix, that links protein sequences to growth rates of the virus in the mathematical model. A combined bioinformatics and systems biology approach can lead to a better understanding of immune system-related diseases where both timing and genomic information are of importance.
Original languageEnglish
JournalJournal of Biological Physics
Issue number3-4
Pages (from-to)335-53
Number of pages19
Publication statusPublished - 2006
Externally publishedYes

ID: 50457744