Did the early full genome sequencing of yeast boost gene function discovery?

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.06 MB, PDF document

BACKGROUND: Although the genome of Saccharomyces cerevisiae (S. cerevisiae) was the first one of a eukaryote organism that was fully sequenced (in 1996), a complete understanding of the potential of encoded biomolecular mechanisms has not yet been achieved. Here, we wish to quantify how far the goal of a full list of S. cerevisiae gene functions still is. RESULTS: The scientific literature about S. cerevisiae protein-coding genes has been mapped onto the yeast genome via the mentioning of names for genomic regions in scientific publications. The match was quantified with the ratio of a given gene name's occurrences to those of any gene names in the article. We find that ~ 230 elite genes with ≥ 75 full publication equivalents (FPEs, FPE = 1 is an idealized publication referring to just a single gene) command ~ 45% of all literature. At the same time, about two thirds of the genes (each with less than 10 FPEs) are described in just 12% of the literature (in average each such gene has just ~ 1.5% of the literature of an elite gene). About 600 genes have not been mentioned in any dedicated article. Compared with other groups of genes, the literature growth rates were highest for uncharacterized or understudied genes until late nineties of the twentieth century. Yet, these growth rates deteriorated and became negative thereafter. Thus, yeast function discovery for previously uncharacterized genes has returned to the level of ~ 1980. At the same time, literature for anyhow well-studied genes (with a threshold T10 (≥ 10 FPEs) and higher) remains steadily growing. CONCLUSIONS: Did the early full genome sequencing of yeast boost gene function discovery? The data proves that the moment of publishing the full genome in reality coincides with the onset of decline of gene function discovery for previously uncharacterized genes. If the current status of literature about yeast molecular mechanisms can be extrapolated into the future, it will take about another ~ 50 years to complete the yeast gene function list. We found that a small group of scientific journals contributed extraordinarily to publishing early reports relevant to yeast gene function discoveries.

Original languageEnglish
Article number46
JournalBiology Direct
Volume18
Number of pages11
ISSN1745-6150
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023. BioMed Central Ltd., part of Springer Nature.

    Research areas

  • Gene function discovery rate, Gene function space, Protein function, Saccharomyces cerevisiae, Uncharacterized genes, Yeast

ID: 363268981