Classification of Left and Right Coronary Arteries in Coronary Angiographies Using Deep Learning

Research output: Contribution to journalJournal articleResearchpeer-review


  • Fulltext

    Final published version, 493 KB, PDF document

Multi-frame X-ray images (videos) of the coronary arteries obtained using coronary angiography (CAG) provide detailed information about the anatomy and blood flow in the coronary arteries and play a pivotal role in diagnosing and treating ischemic heart disease. Deep learning has the potential to quickly and accurately quantify narrowings and blockages of the arteries from CAG videos. A CAG consists of videos acquired separately for the left coronary artery and the right coronary artery (LCA and RCA, respectively). The pathology for LCA and RCA is typically only reported for the entire CAG, and not for the individual videos. However, training of stenosis quantification models is difficult when the RCA and LCA information of the videos are unknown. Here, we present a deep learning-based approach for classifying LCA and RCA in CAG videos. Our approach enables linkage of videos with the reported pathological findings. We manually labeled 3545 and 520 videos (approximately seven videos per CAG) to enable training and testing of the models, respectively. We obtained F1 scores of 0.99 on the test set for LCA and RCA classification LCA and RCA classification on the test set. The classification performance was further investigated with extensive experiments across different model architectures (R(2+1)D, X3D, and MVIT), model input sizes, data augmentations, and the number of videos used for training. Our results showed that CAG videos could be accurately curated using deep learning, which is an essential preprocessing step for a downstream application in diagnostics of coronary artery disease.

Original languageEnglish
Article number2087
JournalElectronics (Switzerland)
Issue number13
Number of pages9
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

    Research areas

  • cardiology, coronary angiography, deep learning, ischemic heart disease, video classification

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 314371073