Citrullination of HP1γ chromodomain affects association with chromatin

Research output: Contribution to journalJournal articlepeer-review

Standard

Citrullination of HP1γ chromodomain affects association with chromatin. / Wiese, Meike; Bannister, Andrew J; Basu, Srinjan; Boucher, Wayne; Wohlfahrt, Kai; Christophorou, Maria A; Nielsen, Michael L; Klenerman, David; Laue, Ernest D; Kouzarides, Tony.

In: Epigenetics & Chromatin, Vol. 12, 21, 2019.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Wiese, M, Bannister, AJ, Basu, S, Boucher, W, Wohlfahrt, K, Christophorou, MA, Nielsen, ML, Klenerman, D, Laue, ED & Kouzarides, T 2019, 'Citrullination of HP1γ chromodomain affects association with chromatin', Epigenetics & Chromatin, vol. 12, 21. https://doi.org/10.1186/s13072-019-0265-x

APA

Wiese, M., Bannister, A. J., Basu, S., Boucher, W., Wohlfahrt, K., Christophorou, M. A., Nielsen, M. L., Klenerman, D., Laue, E. D., & Kouzarides, T. (2019). Citrullination of HP1γ chromodomain affects association with chromatin. Epigenetics & Chromatin, 12, [21]. https://doi.org/10.1186/s13072-019-0265-x

Vancouver

Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA et al. Citrullination of HP1γ chromodomain affects association with chromatin. Epigenetics & Chromatin. 2019;12. 21. https://doi.org/10.1186/s13072-019-0265-x

Author

Wiese, Meike ; Bannister, Andrew J ; Basu, Srinjan ; Boucher, Wayne ; Wohlfahrt, Kai ; Christophorou, Maria A ; Nielsen, Michael L ; Klenerman, David ; Laue, Ernest D ; Kouzarides, Tony. / Citrullination of HP1γ chromodomain affects association with chromatin. In: Epigenetics & Chromatin. 2019 ; Vol. 12.

Bibtex

@article{778ecce276e64c9e8a06c9ef0b056d27,
title = "Citrullination of HP1γ chromodomain affects association with chromatin",
abstract = "BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs.CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.",
author = "Meike Wiese and Bannister, {Andrew J} and Srinjan Basu and Wayne Boucher and Kai Wohlfahrt and Christophorou, {Maria A} and Nielsen, {Michael L} and David Klenerman and Laue, {Ernest D} and Tony Kouzarides",
year = "2019",
doi = "10.1186/s13072-019-0265-x",
language = "English",
volume = "12",
journal = "Epigenetics & Chromatin",
issn = "1756-8935",
publisher = "BioMed Central Ltd.",

}

RIS

TY - JOUR

T1 - Citrullination of HP1γ chromodomain affects association with chromatin

AU - Wiese, Meike

AU - Bannister, Andrew J

AU - Basu, Srinjan

AU - Boucher, Wayne

AU - Wohlfahrt, Kai

AU - Christophorou, Maria A

AU - Nielsen, Michael L

AU - Klenerman, David

AU - Laue, Ernest D

AU - Kouzarides, Tony

PY - 2019

Y1 - 2019

N2 - BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs.CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.

AB - BACKGROUND: Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.RESULTS: We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs.CONCLUSION: Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.

U2 - 10.1186/s13072-019-0265-x

DO - 10.1186/s13072-019-0265-x

M3 - Journal article

C2 - 30940194

VL - 12

JO - Epigenetics & Chromatin

JF - Epigenetics & Chromatin

SN - 1756-8935

M1 - 21

ER -

ID: 216015757