Time-ordered comorbidity correlations identify patients at risk of mis- and overdiagnosis

Research output: Contribution to journalJournal articleResearchpeer-review

Diagnostic errors are common and can lead to harmful treatments. We present a data-driven, generic approach for identifying patients at risk of being mis- or overdiagnosed, here exemplified by chronic obstructive pulmonary disease (COPD). It has been estimated that 5–60% of all COPD cases are misdiagnosed. High-throughput methods are therefore needed in this domain. We have used a national patient registry, which contains hospital diagnoses for 6.9 million patients across the entire Danish population for 21 years and identified statistically significant disease trajectories for COPD patients. Using 284,154 patients diagnosed with COPD, we identified frequent disease trajectories comprising time-ordered comorbidities. Interestingly, as many as 42,459 patients did not present with these time-ordered, common comorbidities. Comparison of the individual disease history for each non-follower to the COPD trajectories, demonstrated that 9597 patients were unusual. Survival analysis showed that this group died significantly earlier than COPD patients following a trajectory. Out of the 9597 patients, we identified one subgroup comprising 2185 patients at risk of misdiagnosed COPD without the typical events of COPD patients. In all, 10% of these patients were diagnosed with lung cancer, and it seems likely that they are underdiagnosed for lung cancer as their laboratory test values and survival pattern are similar to such patients. Furthermore, only 4% had a lung function test to confirm the COPD diagnosis. Another subgroup with 2368 patients were found to be at risk of “classically” overdiagnosed COPD that survive >5.5 years after the COPD diagnosis, but without the typical complications of COPD.

Original languageEnglish
Article number12
Journalnpj Digital Medicine
Number of pages10
Publication statusPublished - 2021

Number of downloads are based on statistics from Google Scholar and www.ku.dk

No data available

ID: 257703908