Disruption of Ca2+i Homeostasis and Connexin 43 Hemichannel Function in the Right Ventricle Precedes Overt Arrhythmogenic Cardiomyopathy in Plakophilin-2-Deficient Mice

Research output: Contribution to journalJournal articleResearchpeer-review

  • Joon-Chul Kim
  • Marta Perez-Hernandez
  • Francisco J. Alvarado
  • Svetlana R. Maurya
  • Jerome Montnach
  • Yandong Yin
  • Mingliang Zhang
  • Xianming Lin
  • Carolina Vasquez
  • Adriana Heguy
  • Feng-Xia Liang
  • Sun-Hee Woo
  • Gregory E. Morley
  • Eli Rothenberg
  • Lundby, Alicia
  • Hector H. Valdivia
  • Marina Cerrone
  • Mario Delmar
Background: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. Methods: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. Results: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+](i) homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. Conclusions: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.
Original languageEnglish
Book seriesCirculation
Volume140
Issue number12
Pages (from-to)1015-1030
ISSN0009-7322
DOIs
Publication statusPublished - 2019

    Research areas

  • arrhythmogenic right ventricular cardiomyopathy, connexin43, plakophilin 2, right ventricle, sudden death

ID: 228368319